DRAEGER'S MIXED-USE PROJECT NOISE AND VIBRATION ASSESSMENT

San Mateo, California

October 17, 2022

Prepared for:

Connor Tutino Associate Project Manager David J. Powers & Associates, Inc. 1736 Franklin Street, Suite 400 Oakland, CA 94612

Prepared by:

Carrie J. Janello Michael S. Thill

ILLINGWORTH & RODKIN, INC.

Acoustics • Air Quality 429 East Cotati Avenue Cotati, CA 94931 (707) 794-0400

I&R Job No.: 22-036

INTRODUCTION

A five-story mixed-use project is proposed at 222 East 4th Avenue in the City of San Mateo, California. The proposed project would include approximately 104,722 square feet of office space, 17,658 square feet of retail space, 8,971 square feet of residential space, and two levels of below-grade parking. Construction of the project would include the demolition of the existing on-site improvements.

This report evaluates the project's potential to result in significant impacts with respect to applicable California Environmental Quality Act (CEQA) guidelines. The report is divided into three sections: 1) the Setting Section provides a brief description of the fundamentals of environmental noise and groundborne vibration, summarizes applicable regulatory criteria, and discusses ambient noise conditions in the project vicinity; 2) the Plan Consistency Analysis section discusses noise and land use compatibility utilizing policies in the City's General Plan; and, 3) the Impacts and Mitigation Measures Section describes the significance criteria used to evaluate project impacts, provides a discussion of each project impact, and presents mitigation measures, where necessary, to mitigate project impacts to a less-than-significant level.

SETTING

Fundamentals of Environmental Noise

Noise may be defined as unwanted sound. Noise is usually objectionable because it is disturbing or annoying. The objectionable nature of sound could be caused by its *pitch* or its *loudness*. *Pitch* is the height or depth of a tone or sound, depending on the relative rapidity (*frequency*) of the vibrations by which it is produced. Higher pitched signals sound louder to humans than sounds with a lower pitch. *Loudness* is intensity of sound waves combined with the reception characteristics of the ear. Intensity may be compared with the height of an ocean wave in that it is a measure of the amplitude of the sound wave.

In addition to the concepts of pitch and loudness, there are several noise measurement scales which are used to describe noise in a particular location. A *decibel (dB)* is a unit of measurement which indicates the relative amplitude of a sound. The zero on the decibel scale is based on the lowest sound level that the healthy, unimpaired human ear can detect. Sound levels in decibels are calculated on a logarithmic basis. An increase of 10 decibels represents a ten-fold increase in acoustic energy, while 20 decibels is 100 times more intense, 30 decibels is 1,000 times more intense, etc. There is a relationship between the subjective noisiness or loudness of a sound and its intensity. Each 10 decibel increase in sound level is perceived as approximately a doubling of loudness over a fairly wide range of intensities. Technical terms are defined in Table 1.

There are several methods of characterizing sound. The most common in California is the *A*-weighted sound level (dBA). This scale gives greater weight to the frequencies of sound to which the human ear is most sensitive. Representative outdoor and indoor noise levels in units of dBA are shown in Table 2. Because sound levels can vary markedly over a short period of time, a method for describing either the average character of the sound or the statistical behavior of the variations must be utilized. Most commonly, environmental sounds are described in terms of an

average level that has the same acoustical energy as the summation of all the time-varying events. This *energy-equivalent sound/noise descriptor* is called L_{eq} . The most common averaging period is hourly, but L_{eq} can describe any series of noise events of arbitrary duration.

The scientific instrument used to measure noise is the sound level meter. Sound level meters can accurately measure environmental noise levels to within about plus or minus 1 dBA. Various computer models are used to predict environmental noise levels from sources, such as roadways and airports. The accuracy of the predicted models depends upon the distance the receptor is from the noise source. Close to the noise source, the models are accurate to within about plus or minus 1 to 2 dBA.

Since the sensitivity to noise increases during the evening and at night -- because excessive noise interferes with the ability to sleep -- 24-hour descriptors have been developed that incorporate artificial noise penalties added to quiet-time noise events. The *Community Noise Equivalent Level* (*CNEL*) is a measure of the cumulative noise exposure in a community, with a 5 dB penalty added to evening (7:00 pm - 10:00 pm) and a 10 dB addition to nocturnal (10:00 pm - 7:00 am) noise levels. The *Day/Night Average Sound Level* (*DNL* or L_{dn}) is essentially the same as CNEL, with the exception that the evening time period is dropped and all occurrences during this three-hour period are grouped into the daytime period.

Effects of Noise

Sleep and Speech Interference

The thresholds for speech interference indoors are about 45 dBA if the noise is steady and above 55 dBA if the noise is fluctuating. Outdoors the thresholds are about 15 dBA higher. Steady noises of sufficient intensity (above 35 dBA) and fluctuating noise levels above about 45 dBA have been shown to affect sleep. Interior residential standards for multi-family dwellings are set by the State of California at 45 dBA Ldn. Typically, the highest steady traffic noise level during the daytime is about equal to the L_{dn} and nighttime levels are 10 dBA lower. The standard is designed for sleep and speech protection and most jurisdictions apply the same criterion for all residential uses. Typical structural attenuation is 12 to 17 dBA with open windows. With closed windows in good condition, the noise attenuation factor is around 20 dBA for an older structure and 25 dBA for a newer dwelling. Sleep and speech interference is therefore possible when exterior noise levels are about 57 to 62 dBA L_{dn} with open windows and 65 to 70 dBA L_{dn} if the windows are closed. Levels of 55 to 60 dBA are common along collector streets and secondary arterials, while 65 to 70 dBA is a typical value for a primary/major arterial. Levels of 75 to 80 dBA are normal noise levels at the first row of development outside a freeway right-of-way. In order to achieve an acceptable interior noise environment, bedrooms facing secondary roadways need to be able to have their windows closed, those facing major roadways and freeways typically need special glass windows.

Annoyance

Attitude surveys are used for measuring the annoyance felt in a community for noises intruding into homes or affecting outdoor activity areas. In these surveys, it was determined that the causes for annovance include interference with speech, radio and television, house vibrations, and interference with sleep and rest. The Ldn as a measure of noise has been found to provide a valid correlation of noise level and the percentage of people annoyed. People have been asked to judge the annoyance caused by aircraft noise and ground transportation noise. There continues to be disagreement about the relative annoyance of these different sources. When measuring the percentage of the population highly annoyed, the threshold for ground vehicle noise is about 50 dBA L_{dn}. At a L_{dn} of about 60 dBA, approximately 12 percent of the population is highly annoyed. When the L_{dn} increases to 70 dBA, the percentage of the population highly annoyed increases to about 25 to 30 percent of the population. There is, therefore, an increase of about 2 percent per dBA between a L_{dn} of 60 to 70 dBA. Between a L_{dn} of 70 to 80 dBA, each decibel increase increases by about 3 percent the percentage of the population highly annoyed. People appear to respond more adversely to aircraft noise. When the L_{dn} is 60 dBA, approximately 30 to 35 percent of the population is believed to be highly annoyed. Each decibel increase to 70 dBA adds about 3 percentage points to the number of people highly annoyed. Above 70 dBA, each decibel increase results in about a 4 percent increase in the percentage of the population highly annoved.

Term	Definition
Decibel, dB	A unit describing, the amplitude of sound, equal to 20 times the logarithm to the base 10 of the ratio of the pressure of the sound measured to the reference pressure. The reference pressure for air is 20 micro Pascals.
Sound Pressure Level	Sound pressure is the sound force per unit area, usually expressed in micro Pascals (or 20 micro Newtons per square meter), where 1 Pascal is the pressure resulting from a force of 1 Newton exerted over an area of 1 square meter. The sound pressure level is expressed in decibels as 20 times the logarithm to the base 10 of the ratio between the pressures exerted by the sound to a reference sound pressure (e. g., 20 micro Pascals). Sound pressure level is the quantity that is directly measured by a sound level meter.
Frequency, Hz	The number of complete pressure fluctuations per second above and below atmospheric pressure. Normal human hearing is between 20 Hz and 20,000 Hz. Infrasonic sound are below 20 Hz and Ultrasonic sounds are above 20,000 Hz.
A-Weighted Sound Level, dBA	The sound pressure level in decibels as measured on a sound level meter using the A-weighting filter network. The A-weighting filter de-emphasizes the very low and very high frequency components of the sound in a manner similar to the frequency response of the human ear and correlates well with subjective reactions to noise.
Equivalent Noise Level, L _{eq}	The average A-weighted noise level during the measurement period.
L _{max} , L _{min}	The maximum and minimum A-weighted noise level during the measurement period.
$L_{01}, L_{10}, L_{50}, L_{90}$	The A-weighted noise levels that are exceeded 1%, 10%, 50%, and 90% of the time during the measurement period.
Day/Night Noise Level, L _{dn} or DNL	The average A-weighted noise level during a 24-hour day, obtained after addition of 10 decibels to levels measured in the night between 10:00 pm and 7:00 am.
Community Noise Equivalent Level, CNEL	The average A-weighted noise level during a 24-hour day, obtained after addition of 5 decibels in the evening from 7:00 pm to 10:00 pm and after addition of 10 decibels to sound levels measured in the night between 10:00 pm and 7:00 am.
Ambient Noise Level	The composite of noise from all sources near and far. The normal or existing level of environmental noise at a given location.
Intrusive	That noise which intrudes over and above the existing ambient noise at a given location. The relative intrusiveness of a sound depends upon its amplitude, duration, frequency, and time of occurrence and tonal or informational content as well as the prevailing ambient noise level.

 TABLE 1
 Definition of Acoustical Terms Used in this Report

Source: Handbook of Acoustical Measurements and Noise Control, Harris, 1998.

Common Outdoor Activities	Noise Level (dBA)	Common Indoor Activities
	110 dBA	Rock band
Jet fly-over at 1,000 feet		
	100 dBA	
Gas lawn mower at 3 feet		
	90 dBA	
Diesel truck at 50 feet at 50 mph		Food blender at 3 feet
	80 dBA	Garbage disposal at 3 feet
Noisy urban area, daytime		
Gas lawn mower, 100 feet	70 dBA	Vacuum cleaner at 10 feet
Commercial area		Normal speech at 3 feet
Heavy traffic at 300 feet	60 dBA	
		Large business office
Quiet urban daytime	50 dBA	Dishwasher in next room
Quiet urban nighttime Quiet suburban nighttime	40 dBA	Theater, large conference room
	30 dBA	Library
Quiet rural nighttime		Bedroom at night, concert hall (background)
	20 dBA	
	10 dBA	Broadcast/recording studio
	0 dBA	

TABLE 2Typical Noise Levels in the Environment

Source: Technical Noise Supplement (TeNS), California Department of Transportation, September 2013.

Fundamentals of Groundborne Vibration

Ground vibration consists of rapidly fluctuating motions or waves with an average motion of zero. Several different methods are typically used to quantify vibration amplitude. One method is the Peak Particle Velocity (PPV). The PPV is defined as the maximum instantaneous positive or negative peak of the vibration wave. In this report, a PPV descriptor with units of mm/sec or in/sec is used to evaluate construction generated vibration for building damage and human complaints. Table 3 displays the reactions of people and the effects on buildings that continuous or frequent intermittent vibration levels produce. The guidelines in Table 3 represent syntheses of vibration criteria for human response and potential damage to buildings resulting from construction vibration.

Construction activities can cause vibration that varies in intensity depending on several factors. The use of pile driving and vibratory compaction equipment typically generates the highest construction related groundborne vibration levels. Because of the impulsive nature of such activities, the use of the PPV descriptor has been routinely used to measure and assess groundborne vibration and almost exclusively to assess the potential of vibration to cause damage and the degree of annoyance for humans.

The two primary concerns with construction-induced vibration, the potential to damage a structure and the potential to interfere with the enjoyment of life, are evaluated against different vibration limits. Human perception to vibration varies with the individual and is a function of physical setting and the type of vibration. Persons exposed to elevated ambient vibration levels, such as people in an urban environment, may tolerate a higher vibration level.

Structural damage can be classified as cosmetic only, such as paint flaking or minimal extension of cracks in building surfaces; minor, including limited surface cracking; or major, that may threaten the structural integrity of the building. Safe vibration limits that can be applied to assess the potential for damaging a structure vary by researcher. The damage criteria presented in Table 3 include several categories for ancient, fragile, and historic structures, the types of structures most at risk to damage. Most buildings are included within the categories ranging from "Historic and some old buildings" to "Modern industrial/commercial buildings". Construction-induced vibration that can be detrimental to the building is very rare and has only been observed in instances where the structure is at a high state of disrepair and the construction activity occurs immediately adjacent to the structure.

The annoyance levels shown in Table 3 should be interpreted with care since vibration may be found to be annoying at lower levels than those shown, depending on the level of activity or the sensitivity of the individual. To sensitive individuals, vibrations approaching the threshold of perception can be annoying. Low-level vibrations frequently cause irritating secondary vibration, such as a slight rattling of windows, doors, or stacked dishes. The rattling sound can give rise to exaggerated vibration complaints, even though there is very little risk of actual structural damage.

Velocity Level, PPV (in/sec)	Human Reaction	Effect on Buildings
0.01	Barely perceptible	No effect
0.04	Distinctly perceptible	Vibration unlikely to cause damage of any type to any structure
0.08	Distinctly perceptible to strongly perceptible	Recommended upper level of the vibration to which ruins and ancient monuments should be subjected
0.1	Strongly perceptible	Threshold at which there is a risk of damage to fragile buildings with no risk of damage to most buildings
0.25	Strongly perceptible to severe	Threshold at which there is a risk of damage to historic and some old buildings.
0.3	Strongly perceptible to severe	Threshold at which there is a risk of damage to older residential structures
0.5	Severe - Vibrations considered unpleasant	Threshold at which there is a risk of damage to new residential and modern commercial/industrial structures

TABLE 3Reaction of People and Damage to Buildings from Continuous or Frequent
Intermittent Vibration Levels

Source: Transportation and Construction Vibration Guidance Manual, California Department of Transportation, April 2020.

Regulatory Background – Noise

This section describes the relevant guidelines, policies, and standards established by State Agencies and the City of San Mateo. The State CEQA Guidelines, Appendix G, are used to assess the potential significance of impacts pursuant to local General Plan policies, Municipal Code standards, or the applicable standards of other agencies. A summary of the applicable regulatory criteria is provided below.

State of California

State CEQA Guidelines. The California Environmental Quality Act (CEQA) contains guidelines to evaluate the significance of effects of environmental noise attributable to a proposed project. Under CEQA, noise impacts would be considered significant if the project would result in:

- (a) Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies;
- (b) Generation of excessive groundborne vibration or groundborne noise levels;
- (c) For a project located within the vicinity of a private airstrip or an airport land use plan or where such a plan has not been adopted within two miles of a public airport or public use airport, if the project would expose people residing or working in the project area to excessive noise levels.

2019 California Building Code, Title 24, Part 2. The current version of the California Building Code (CBC) requires interior noise levels in multi-family residential units attributable to exterior environmental noise sources to be limited to a level not exceeding 45 dBA DNL/CNEL in any habitable room.

2019 California Building Cal Green Code. The State of California established exterior sound transmission control standards for new non-residential buildings as set forth in the 2019 California Green Building Standards Code (Section 5.507.4.1 and 5.507.4.2). The sections that pertain to this project are as follows:

5.507.4.1 Exterior noise transmission, prescriptive method. Wall and roof-ceiling assemblies exposed to the noise source making up the building envelope shall meet a composite STC rating of at least 50 or a composite OITC rating of no less than 40, with exterior windows of a minimum STC of 40 or OITC of 30 when the building falls within the 65 dBA L_{dn} noise contour of a freeway or expressway, railroad, industrial source or fixed-guideway noise source, as determined by the local general plan noise element.

5.507.4.2 Performance method. For buildings located, as defined by Section 5.507.4.1, wall and roof-ceiling assemblies exposed to the noise source making up the building envelope shall be constructed to provide an interior noise environment attributable to exterior sources that does not exceed an hourly equivalent noise level ($L_{eq (1-hr)}$) of 50 dBA in occupied areas during any hour of operation.

The performance method, which establishes the acceptable interior noise level, is the method typically used when applying these standards.

City of San Mateo

City of San Mateo General Plan: The Noise Element of the City of San Mateo General Plan sets forth goals and policies to control environmental noise and protect citizens from excessive noise exposure. The goals and policies relevant to this project are summarized below:

GOAL 1: Protect "noise sensitive" land uses from excessive noise levels.

POLICIES:

- N 1.1: Interior Noise Level Standard. Require submittal of an acoustical analysis and interior noise insulation for all "noise sensitive" land uses listed in Table N-1 that have an exterior noise level of 60 dB (L_{dn}) or above, as shown on Figure N-1. The maximum interior noise level shall not exceed 45 dB (L_{dn}) in any habitable rooms.
- N 1.2: Exterior Noise Level Standard. Require an acoustical analysis for new parks, play areas, and multi-family common open space (intended for the use and the enjoyment of residents) that have an exterior noise level of 60 dB (L_{dn}) or above, as shown on Figure N-1. Require an acoustical analysis that uses peak hour L_{eq} for new parks and play areas. Require a feasibility analysis of noise reduction measures for public parks and play areas. Incorporate necessary mitigation measures into residential project design to minimize common open

space noise levels. Maximum exterior noise should not exceed 67 dB (L_{dn}) for residential uses and should not exceed 65 dB (L_{eq}) during the noisiest hour for public park uses.

GOAL 2: Minimize unnecessary, annoying and unhealthful noise.

POLICIES:

- N 2.1: Noise Ordinance. Continue implementation and enforcement of City's existing noise control ordinance: (a) which prohibits noise that is annoying or injurious to neighbors of normal sensitivity, making such activity a public nuisance, and (b) restricts the hours of construction to minimize noise impact.
- N 2.2: Minimize Noise Impact. Protect all "noise-sensitive" land uses listed in Tables N-1 and N-2 from adverse impacts caused by noise generated on-site by new developments. Incorporate necessary mitigation measures into development design to minimize noise impacts. Prohibit long-term exposure increases of 3 dB (L_{dn}) or greater at the common property line, excluding existing ambient noise levels.
- N 2.3: Minimize Commercial Noise. Protect land uses other than those listed as "noise sensitive" in Table N-1 from adverse impacts caused by the on-site noise generated by new developments. Incorporate necessary mitigation measures into development design to minimize noise impacts. Prohibit new uses that generate noise levels of 65 dB (L_{dn}) or above at the property line, excluding existing ambient noise levels.
- N 2.4: Traffic Noise. Recognize projected increases in ambient noise levels resulting from traffic increases. Promote the installation of noise barriers along highways where "noise-sensitive" land uses listed in Table N-1 are adversely impacted by unacceptable noise levels [60 dB (L_{dn}) or above]. Require adequate noise mitigation to be incorporated into the widening of SR 92 and US 101. Accept noise increases on El Camino Real at existing development and require new multi-family development to provide common open space having a maximum exterior noise level of 67 dB (L_{dn}).

TABLE N-1 NOISE SENSITIVE LAND-USE COMPATIBILITY GUIDELINES FOR COMMUNITY NOISE ENVIRONMENTS ¹ Day-Night Average Sound Level (L _{dn}), Decibels							
Normally Conditionally Normally Land-Use Category Acceptable ² Acceptable ³ Unacceptable ⁴							
Single-Family Residential	50 to 59	60 to 70	Greater than 70				
Multi-Family Residential	50 to 59	60 to 70	Greater than 70				
Hotels, Motels, and Other Lodging Houses	50 to 59	60 to 70	Greater than 70				
Long-Term Care Facilities	50 to 59	60 to 70	Greater than 70				
Hospitals	50 to 59	60 to 70	Greater than 70				
Schools	50 to 59	60 to 70	Greater than 70				
Multi-Family Common Open Space Intended for the Use and Enjoyment of Residents	50 to 67		Greater than 67				
TABLE N-2 NOISE GUIDELINES FOR OUTDOOR ACTIVITIES Average Sound Level (L _{eq}), Decibels							
Normally Conditionally Normally Land Use Category Acceptable ² Acceptable ³ Unacceptable ⁴							

¹ These guidelines are derived from the California Department of Health Services, Guidelines for the Preparation and Content of the Noise Element of the General Plan, 2003. The State Guidelines have been modified to reflect San Mateo's preference for distinct noise compatibility categories and to better reflect local land-use and noise conditions. It is intended that these guidelines be utilized to evaluate the suitability of land-use changes only and not to determine cumulative noise impacts. Land uses other than those classified as being "noise sensitive" are exempt from these compatibility guidelines.

Greater than 65*

50 to 65*

² Normally Acceptable – Specified land use is satisfactory, based upon the assumption that any buildings involved are of normal conventional construction, without any special noise insulation requirements.

³ Conditionally Acceptable – New construction should be undertaken only after a detailed analysis of the noise reduction requirement is conducted and needed noise insulation features included in the design.

⁴ Normally Unacceptable – New construction should be discouraged. If new construction or development does proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design.

* Average Sound Level (L_{eq}) for peak hour.

Parks, Playgrounds

City of San Mateo Municipal Code: The Noise Regulations of the San Mateo Municipal Code, Chapter 7.30 are set forth to protect the inhabitants of the City against all forms of nuisances.

<u>Section 7.30.040 Maximum Permissible Sound Levels.</u> It is unlawful for any person to operate or cause to be operated any source of sound at any location within the city or allow the creation of any noise on property owned, leased, occupied or otherwise controlled by such person, which causes the noise level when measured on any other property to exceed:

- (1) The noise level standard for that property as specified in Table 7.30.040 for a cumulative period of more than thirty minutes in any hour;
- (2) The noise level standard plus five dB for a cumulative period of more than fifteen minutes in any hour;
- (3) The noise level standard plus ten dB for a cumulative period of more than five minutes in any hour;
- (4) The noise level standard plus fifteen dB for a cumulative period of more than one minute in any hour; or
- (5) The noise level standard or the maximum measured ambient level, plus twenty dB for any period of time.

If the measured ambient level for any area is higher than the standard set in Table 7.30.040, then the ambient shall be the base noise level standard for purposes of this section. In such cases, the noise levels for purposes of subsections (2) through (5) of this section shall be increased in five dB increments above the ambient.

Noise Zone	Time Period	Noise Level, dBA
Noise Zone 1	10 p.m7 a.m.	50
Noise Zone 1	7 a.m10 p.m.	60
Nation Zama 2	10 p.m7 a.m.	55
Noise Zone 2	7 a.m10 p.m.	60
Noise Zone 3	10 p.m7 a.m.	60
Noise Zone 3	7 a.m10 p.m.	65
Noise Zone 4	Anytime	70

 Table 7.30.040: Noise Level Standards

<u>Section 7.30.060</u> Special Provisions. Construction, alteration, repair, or land development activities authorized by a valid city permit shall be allowed at the following times:

- Weekdays: between 7:00 a.m. and 7:00 p.m.
- Saturdays: between 9:00 a.m. and 5:00 p.m.
- Sundays and Holidays: between 12:00 p.m. and 4:00 p.m.
- Or at other such hours as authorized or restricted by the permit, so long as they meet the following conditions:

- 1. No individual piece of equipment shall produce a noise level exceeding 90 dBA at a distance of 25 feet. If the device is housed within a structure on the property, the measurement shall be made outside the structure at a distance as close to 25 feet as possible.
- 2. The noise level outside of any point outside the property plane of the project shall not exceed 90 dBA.

Existing Noise Environment

The project site is located to the south of the East 4th Avenue/South B Street intersection in San Mateo, California. A residential building is located southeast of the project site, opposite East 5th Avenue, and existing commercial retail uses are located southwest of the site, opposite South Ellsworth Avenue, northwest of the site, opposite East 4th Avenue, and northeast of the site, opposite South B Street.

The existing noise environment at the site results primarily from local vehicular traffic along East 4th Avenue and the other surrounding roadways. Distant U.S. Highway 101 (Highway 101) traffic noise, train noise from the nearby tracks one block to the northeast, and aircraft associated with the San Francisco International Airport also contribute to the noise environment.

A noise monitoring survey, which included two long-term (LT-1 and LT-2) and two short-term (ST-1 and ST-2) noise measurements, was performed at the site between Tuesday March 22, 2022 and Thursday March 24, 2022. All measurement locations are shown in Figure 1.

Long-term noise measurement LT-1 was made approximately 30 feet southeast of the centerline of East 4th Avenue. Hourly average noise levels at LT-1 typically ranged from 66 to 68 dBA L_{eq} during the day and from 53 to 67 dBA L_{eq} at night. The day-night average noise level (L_{dn}) for the 24-hour period occurring on Wednesday March 23, 2022 was 70 dBA L_{dn} . The daily trends in noise levels at LT-1 are shown in Figures A1 through A3 in the Appendix of this report.

Noise measurement LT-2 was made approximately 20 feet northwest of the centerline of East 5th Avenue. Hourly average noise levels at LT-2 typically ranged from 62 to 76 dBA L_{eq} during the day and from 51 to 66 dBA L_{eq} at night. The day-night average noise level (L_{dn}) for the 24-hour period occurring on Wednesday March 23, 2022 was 69 dBA L_{dn} . The daily trends in noise levels at LT-2 are shown in Appendix Figures A4 through A6.

Two short-term noise measurements were made on Tuesday March 22, 2022 in 10-minute intervals between 1:00 p.m. and 1:30 p.m. ST-1 was made approximately 40 feet northeast of the centerline of South Ellsworth Avenue. Contributing noise sources at ST-1 included parking lot noise, traffic along nearby South 4th Avenue, and airplane flyovers. Parking lot activity generated noise levels of 62 to 72 dBA. Traffic noise generated noise levels ranging from 62 to 64 dBA, and airplanes generated noise levels of 58 to 60 dBA. The 10-minute average noise level at ST-1 was 56 dBA L_{eq(10-min)}.

ST-2 was made approximately 25 feet southwest of the centerline of South B Street. Major noise sources at ST-2 included local traffic along nearby East 4th Avenue and South B Street and train

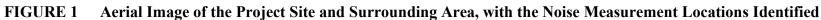

noise from the tracks one block northeast of the site. Typical traffic noise ranged from 52 to 54 dBA, while noisy vehicles generated noise levels up to 80 dBA. A train horn generated noise levels ranging from 70 to 72 dBA. The 10-minute average noise level at ST-2 was 64 dBA $L_{eq(10-min)}$.

Table 4 summarizes the results of the 10-minute noise measurements made at ST-1 and ST-2.

Noise Measurement Location (Date, Time)	Lmax	L(1)	L(10)	L(50)	L(90)	Leq(10)
ST-1: ~40 feet northeast of the centerline of South Ellsworth Avenue (3/22/2022, 1:00-1:10 p.m.)	72	64	58	54	51	56
ST-2: ~25 feet southwest of the centerline of South B Street (3/22/2022, 1:20-1:30 p.m.)	80	76	66	60	54	64

 TABLE 4
 Summary of Short-Term Noise Measurement Data (dBA)

Source: Google Earth, 2022.

PLAN CONSISTENCY ANALYSIS

Noise and Land Use Compatibility

The City of San Mateo General Plan, which is presented in detail in the Regulatory Background section of this report, includes exterior and interior noise thresholds for residential uses. Note, the City's exterior noise thresholds apply only to common use areas and not private balconies, porches, or patios. Additionally, the State of California establishes acceptable interior noise limits within residential and non-residential land uses. The thresholds that apply to the proposed project are summarized below:

- Policy N 1.2 and Table N-1 of the City's General Plan identifies exterior noise thresholds of 59 dBA L_{dn} or below as "normally acceptable" for multi-family residential uses; however, the policy further states that common open spaces at multi-family residential buildings intended for the use and enjoyment of residents would be limited to a maximum allowable noise level of 67 dBA L_{dn}.
- The City and State's acceptable interior noise level standard is 45 dBA L_{dn} or less for the proposed residential land uses.
- The Cal Green Code standards specify an interior noise environment attributable to exterior sources not to exceed an hourly equivalent noise level (L_{eq (1-hr)}) of 50 dBA in occupied areas of nonresidential uses during any hour of operation.

The future noise environment at the site would continue to result primarily from vehicular traffic along nearby roadways. The traffic study completed for the proposed project included average daily traffic (ADT) turning movements for five intersections in the project vicinity. Comparing the ADT volumes for the cumulative plus project scenario to the existing ADT volumes, the future traffic noise level increase experienced at the project site would be up to 2 dBA L_{dn} along East 4th Avenue and up to 1 dBA L_{dn} along East 5th Avenue with the inclusion of the proposed project.

Future Exterior Noise Environment

The site plan shows a community open space area and outdoor dining area, which would be affiliated with ground-level retail, on the first floor. Office terraces are shown on levels three and four, and an office roof deck is shown on level five. A common use outdoor area associated with the residential component of the proposed project is also shown on level five.

Residential Land Uses

The residential common use area is proposed along the building façade facing South B Street. The center of the common use area would be set back approximately 75 feet from the centerline of the roadway. Due to the height of the common use area and the setback from the edge of the building, the attenuation at the center of the common use area, which is where the majority of the extended use would occur, would be about 20 dBA. Therefore, the future exterior noise levels at the center of the fifth-floor common use area would be below 60 dBA L_{dn}. This would be compatible with the City's 67 dBA L_{dn} threshold for residential uses.

Office and Commercial Retail Land Uses

While the City does not define exterior noise thresholds for office and retail uses, other cities in the Bay Area typically limit exterior noise levels at these types of uses to 70 dBA L_{dn} . For purposes of this report, 70 dBA L_{dn} is used as the exterior noise threshold for offices and commercial retail uses.

The office balcony on level three stretches along the building façades facing South Ellsworth Avenue, East 4th Street, and South B Street. The center of the third level terrace would be set back 50 feet from the centerline of South Ellsworth Avenue and South B Street and about 60 feet from the centerline of East 4th Street. The elevation and setback of the center of the third-floor office terrace would result in attenuation of about 15 dBA. The future exterior noise levels at the third-floor office terrace would be below 70 dBA L_{dn}.

The fourth-floor office terrace is located in the westernmost corner of the building, with the center set back approximately 80 feet from the centerline of South Ellsworth Avenue and approximately 100 feet from the centerline of East 4th Street. At these distances and at a higher elevation than the third-floor office terrace, the noise attenuation at the center of this terrace would be more than 15 dBA. The future exterior noise levels at the fourth-floor office terrace would be below 70 dBA L_{dn} .

The fifth-floor roof deck associated with the office use component of the proposed project would be located along the building façades facing East 4th Avenue and South Ellsworth Avenue, with the center set back 80 and 75 feet, respectively. Due to these setbacks and the elevation of the fifth floor, the roof deck would experience noise attenuation of up to 20 dBA. The future exterior noise levels at the fourth-floor office terrace would be below 70 dBA L_{dn} .

The ground-level outdoor seating area and common open space area are located at the intersection of South Ellsworth Avenue and East 4th Street. The center of this area would be set back from the centerlines of these roadways by approximately 65 feet from the centerline of South Ellsworth Avenue and approximately 75 feet from the centerline of East 4th Street. The building would provide partial shielding for this area. Assuming partial shielding, the future exterior noise levels at the ground-level outdoor seating area and common open space would be below 70 dBA L_{dn}.

The common use outdoor areas associated with the office and commercial retail uses would be compatible with the future noise environment at the project site.

Future Interior Noise Environment

Residential Land Uses

Standard residential construction provides approximately 15 dBA of exterior-to-interior noise reduction, assuming the windows are partially open for ventilation. Standard construction with the windows closed provides approximately 20 to 25 dBA of noise reduction in interior spaces. Where exterior noise levels range from 60 to 65 dBA L_{dn} , the inclusion of adequate forced-air mechanical ventilation is often the method selected to reduce interior noise levels to acceptable levels by closing the windows to control noise. Where noise levels exceed 65 dBA L_{dn} , forced-air mechanical ventilation systems and sound-rated construction methods are normally required. Such

methods or materials may include a combination of smaller window and door sizes as a percentage of the total building façade facing the noise source, sound-rated windows and doors, sound rated exterior wall assemblies, and mechanical ventilation so windows may be kept closed at the occupant's discretion.

Residential units are located on level five of the proposed building along the façades facing South B Street and East 5th Avenue. The setbacks of these units would be approximately 85 feet from the centerline of South B Street and approximately 60 feet from the centerline of East 5th Avenue. At these distances, the residential units would be exposed to future exterior noise levels ranging from 65 to 68 dBA L_{dn} . Assuming windows to be partially open, future interior noise levels in these units would range from 50 to 53 dBA L_{dn} .

To meet the City and State's interior noise requirement of 45 dBA L_{dn} , implementation of noise insulation features would be required.

Office and Commercial Retail Land Uses

Offices and commercial retail would be located on levels one through four, with setbacks from the centerlines of the surrounding roadways of approximately 55 feet from East 4^{th} Avenue, 30 feet from East 5^{th} Avenue, and 40 to 45 feet from South Ellsworth Avenue and South B Street. At these distances, daytime hourly average noise levels would range from 61 to 75 dBA L_{eq} , with day-night average noise levels up to 69 dBA L_{dn} .

Standard construction materials for offices and commercial retail uses would provide about 25 dBA of noise reduction in interior spaces. The inclusion of adequate forced-air mechanical ventilation systems is normally required so that windows may be kept closed at the occupant's discretion and would provide an additional 5 dBA reduction. The standard construction materials in combination with forced-air mechanical ventilation would satisfy the daytime threshold of 50 dBA $L_{eq(1-hr)}$

Spaces where lower noise levels would be desired, such as private offices and conference rooms, may benefit from additional noise control in order to meet a lower, more desirable interior noise level. Additional noise control could be accomplished by selecting higher sound-rated windows (STC 34 or greater along exterior façades).

Noise Insulation Features to Reduce Future Interior Noise Levels

The following noise insulation features shall be incorporated into the proposed project to reduce interior noise levels to 45 dBA L_{dn} or less at residential interiors:

• Provide a suitable form of forced-air mechanical ventilation, as determined by the local building official, for all residential units on the project site, so that windows can be kept closed at the occupant's discretion to control interior noise and achieve the interior noise standards.

• Preliminary calculations indicate that all residential units would require windows and doors with a minimum rating of 30 STC with adequate forced-air mechanical ventilation to meet the interior noise threshold of 45 dBA L_{dn}.

The implementation of these noise insulation features would reduce interior noise levels to 45 dBA L_{dn} or less at residential uses.

Conditions of Approval

Interior Noise Standard for Residential Development. The project applicant shall prepare final design plans that incorporate building design and acoustical treatments to ensure compliance with State Building Codes and City noise standards. A project-specific acoustical analysis shall be prepared to ensure that the design incorporates controls to reduce interior noise levels to 45 dBA L_{dn} or lower within the residential unit and to 50 dBA $L_{eq(1-hr)}$ or lower within nonresidential interiors. The project applicant shall conform with any special building construction techniques requested by the City's Building Department, which may include sound-rated windows and doors, sound-rated wall constructions, and acoustical caulking.

NOISE IMPACTS AND MITIGATION MEASURES

This section describes the significance criteria used to evaluate project impacts under CEQA, provides a discussion of each project impact, and presents mitigation measures, where necessary, to reduce project impacts to less-than-significant levels.

Significance Criteria

The following criteria were used to evaluate the significance of environmental noise resulting from the project:

- A significant noise impact would be identified if the project would generate a substantial temporary or permanent noise level increase over ambient noise levels at existing noise-sensitive receptors surrounding the project site and that would exceed applicable noise standards presented in the General Plan or Municipal Code at existing noise-sensitive receptors surrounding the project site.
 - A significant noise impact would be identified if construction-related noise would exceed the applicable noise standards presented in the San Mateo Municipal Code.
 - \circ A significant permanent noise level increase would occur if the project would result in a 3 dBA L_{dn} or greater.
 - A significant noise impact would be identified if the project would expose persons to or generate noise levels that would exceed applicable noise standards presented in the General Plan or Municipal Code.

- A significant impact would be identified if the construction of the project would generate excessive vibration levels surrounding receptors. Groundborne vibration levels exceeding 0.3 in/sec PPV would have the potential to result in cosmetic damage to normal buildings (see Table 3).
- A significant noise impact would be identified if the project would expose people residing or working in the project area to excessive aircraft noise levels.
- **Impact 1a:** Temporary Construction Noise. Existing and future noise-sensitive land uses would potentially be exposed to a temporary increase in noise levels excess of the City's construction noise limits. This is a potentially significant impact.

The project applicant proposes to demolish the existing buildings on the project site. The construction schedule assumed that the earliest possible start date would be early March 2023, with an estimated completion date of mid of November 2024. Construction phases would include demolition, site preparation, grading/excavation, trenching, building construction, and paving. During each phase of construction, there would be a different mix of equipment operating, and noise levels would vary by phase and vary within phases, based on the amount of equipment in operation and the location at which the equipment is operating.

Noise impacts resulting from construction depend upon the noise generated by various pieces of construction equipment, the timing and duration of noise-generating activities, and the distance between construction noise sources and noise-sensitive areas. Construction noise impacts primarily result when construction activities occur during noise-sensitive times of the day (e.g., early morning, evening, or nighttime hours), the construction occurs in areas immediately adjoining noise-sensitive land uses, or when construction lasts over extended periods of time.

Section 7.30.060 of the City of San Mateo's Municipal Code limits construction to weekdays between 7:00 a.m. and 7:00 p.m., Saturdays between 9:00 a.m. and 5:00 p.m., and Sundays and holidays between 12:00 p.m. and 4:00 p.m. Additionally, the City specifies that no individual piece of equipment shall produce a noise level exceeding 90 dBA at a distance of 25 feet and that the noise level outside any point outside the property plane of the project shall not exceed 90 dBA.

Construction activities generate considerable amounts of noise, especially during earth-moving activities when heavy equipment is used. The hauling of excavated materials and construction materials would generate truck trips on local roadways, as well. For the proposed project, pile driving, which generates excessive noise levels, is not expected. The typical range of maximum instantaneous noise levels for the proposed project would be 70 to 90 dBA L_{max} at a distance of 50 feet (see Table 5) from the equipment. Table 6 shows the hourly average noise level ranges, by construction phase, typical for various types of projects. Hourly average noise levels generated by construction are about 72 to 88 dBA L_{eq} for mixed-use buildings, measured at a distance of 50 feet from the center of a busy construction site. Construction-generated noise levels drop off at a rate of about 6 dBA per doubling of the distance between the source and receptor. Shielding by buildings or terrain often result in lower construction noise levels at distant receptors.

Equipment expected to be used in each construction phase are summarized in Table 7, along with the quantity of each type of equipment and the reference noise level at 50 feet, assuming the operation of the two loudest pieces of construction equipment for each construction phase.

Federal Highway Administration's (FHWA's) Roadway Construction Noise Model (RCNM) was used to calculate the hourly average noise levels for each phase of construction, assuming the two loudest pieces of equipment would operate simultaneously, as recommended by the FTA for construction noise evaluations. This construction noise model includes representative sound levels for the most common types of construction equipment and the approximate usage factors of such equipment that were developed based on an extensive database of information gathered during the construction of the Central Artery/Tunnel Project in Boston, Massachusetts (CA/T Project or "Big Dig"). The usage factors represent the percentage of time that the equipment would be operating at full power.

Noise levels calculated at 50 feet in Table 7 were propagated from the geometrical center of the project site to the receiving property lines of existing noise-sensitive receptors surrounding the site. The construction noise levels at the receiving property lines are summarized in Table 8. Noise levels in Table 8 do not assume reductions due to intervening buildings or existing barriers. Note, the existing commercial buildings northeast of the project site, opposite South B Street, would be demolished under future conditions. A project currently in the application process proposes a mixed-use building with affordable housing residential units and an office/retail building. For purposes of this project, the receptors expected under the proposed project are assumed to exist by the time the Draegers Mixed-Use project is under construction. These are denoted as future receptors.

Equipment Category	L _{max} Level (dBA) ^{1,2}	Impact/Continuous
Arc Welder	73	Continuous
Auger Drill Rig	85	Continuous
Backhoe	80	Continuous
Bar Bender	80	Continuous
Boring Jack Power Unit	80	Continuous
Chain Saw	85	Continuous
Compressor ³	70	Continuous
Compressor (other)	80	Continuous
Concrete Mixer	85	Continuous
Concrete Pump	82	Continuous
Concrete Saw	90	Continuous
Concrete Vibrator	80	Continuous
Crane	85	Continuous
Dozer	85	Continuous
Excavator	85	Continuous
Front End Loader	80	Continuous
Generator	82	Continuous
Generator (25 KVA or less)	70	Continuous
Gradall	85	Continuous
Grader	85	Continuous
Grinder Saw	85	Continuous
Horizontal Boring Hydro Jack	80	Continuous
Hydra Break Ram	90	Impact
Impact Pile Driver	105	Impact
Insitu Soil Sampling Rig	84	Continuous
Jackhammer	85	Impact
Mounted Impact Hammer (hoe ram)	90	Impact
Paver	85	Continuous
Pneumatic Tools	85	Continuous
Pumps	77	Continuous
Rock Drill	85	Continuous
Scraper	85	Continuous
Slurry Trenching Machine	82	Continuous
Soil Mix Drill Rig	80	Continuous
Street Sweeper	80	Continuous
Tractor	84	Continuous
Truck (dump, delivery)	84	Continuous
Vacuum Excavator Truck (vac-truck)	85	Continuous
Vibratory Compactor	80	Continuous
Vibratory Pile Driver	95	Continuous
All other equipment with engines larger than 5 HP	85	Continuous

Construction Equipment 50-Foot Noise Emission Limits TABLE 5

Notes:

¹Measured at 50 feet from the construction equipment, with a "slow" (1 sec.) time constant. ²Noise limits apply to total noise emitted from equipment and associated components operating at full power while engaged in its intended operation.

³Portable Air Compressor rated at 75 cfm or greater and that operates at greater than 50 psi.

	Domestic Housing		Hotel Scho	e Building, , Hospital, ol, Public Vorks	Garag Amu Recrea	rial Parking ce, Religious isement & itions, Store, ice Station	Roads of Sev	lic Works & Highways, vers, and renches
	Ι	II	Ι	II	Ι	II	Ι	II
Ground								
Clearing	83	83	84	84	84	83	84	84
Excavation	88	75	89	79	89	71	88	78
Foundations	81	81	78	78	77	77	88	88
Erection	81	65	87	75	84	72	79	78
Finishing	88	72	89	75	89	74	84	84
I - All pertinent equipment present at site.II - Minimum required equipment present at site.								

 TABLE 6
 Typical Ranges of Construction Noise Levels at 50 Feet, Leq (dBA)

Source: U.S.E.P.A., Legal Compilation on Noise, Vol. 1, p. 2-104, 1973.

Phase of Construction	Total Workdays	Construction Equipment (Quantity)	Estimated Construction Noise Level at 50 feet
Demolition	26 days Concrete/Industrial Saw (1) ^a Excavator (1) Tractor/Loader/Backhoe (1) ^a		85 dBA L _{eq}
Site Preparation	1 day	Grader (1) ^a	81 dBA L _{eq}
Grading/Excavation	71 days	Excavator (1) Grader (1) ^a Rubber-Tired Dozer (1) Tractor/Loader/Backhoe (1) ^a Shoring Drill Rig (1)	84 dBA L _{eq}
Trenching/Foundation	55 days	Tractor/Loader/Backhoe (1) ^a	80 dBA L _{eq}
Building – Structure245 daysCrane (1) ^a Aerial Lift (1) ^a		74 dBA L_{eq}	
Building – Exterior139 daysCrane $(1)^a$ Forklift (2) Welder $(1)^a$		Forklift (2)	75 dBA L_{eq}
Paving	50 days	Paver (1) ^a Paving Equipment (1) ^a Roller (1)	83 dBA L _{eq}

^a Denotes two loudest pieces of construction equipment per phase.

	Calculated Hourly Average Noise Levels, Leq (dBA)						
Phase of Construction	(90ft) Commercial (125ft) Comm		Northwest Commercial (175ft)	Future Northeast Residential/ Commercial (125ft)			
Demolition	73 dBA Leq	74 dBA Leq	73 dBA Leq	74 dBA L _{eq}			
Site Preparation	70 dBA L _{eq}	70 dBA L _{eq}	70 dBA L _{eq}	70 dBA L _{eq}			
Grading/Excavation	72 dBA L _{eq}	73 dBA L _{eq}	72 dBA L _{eq}	73 dBA L _{eq}			
Trenching/Foundation	69 dBA L _{eq}	69 dBA L _{eq}	69 dBA L _{eq}	69 dBA L _{eq}			
Building – Structure	63 dBA L _{eq}	63 dBA L _{eq}	63 dBA L _{eq}	63 dBA L _{eq}			
Building – Exterior	63 dBA L _{eq}	64 dBA L _{eq}	63 dBA L _{eq}	64 dBA L _{eq}			
Paving	72 dBA L _{eq}	72 dBA L _{eq}	72 dBA L _{eq}	73 dBA L _{eq}			

 TABLE 8
 Estimated Construction Noise Levels at Receiving Property Lines

As shown in Tables 7 and 8, construction noise levels would intermittently range from 74 to 85 dBA L_{eq} when activities occur approximately 50 feet from nearby receptors and would typically range from 63 to 74 dBA L_{eq} when focused near the center of the site. Individual pieces of equipment could potentially exceed the City's 90 dBA noise limit at a distance of 25 feet. This is a potentially significant impact.

Mitigation Measure 1a:

Modification, placement, and operation of construction equipment are possible means for minimizing the impact of construction noise on existing sensitive receptors. Construction equipment should be well-maintained and used judiciously to be as quiet as possible. Additionally, construction activities for the proposed project should include the following best management practices to reduce noise from construction activities near sensitive land uses:

- Construction staging areas shall be established at locations that will create the greatest distance between the construction-related noise sources and noise-sensitive receptors nearest the project site during all project construction.
- Use of exceptionally loud equipment such as jackhammers and concrete saws within 35 feet of shared property lines shall be limited, as feasible.
- All internal combustion engine-driven equipment shall be equipped with intake and exhaust mufflers that are in good condition and appropriate for the equipment.
- Unnecessary idling of internal combustion engines should be strictly prohibited. If necessary, idling of internal combustion engines shall be limited to 5 minutes.
- Stationary noise-generating equipment, such as air compressors or portable power generators, shall be located as far as possible from sensitive receptors and property lines. If they must be located within 35 feet of receptors and property lines, adequate muffling (with barriers or enclosures where feasible and appropriate) shall be used to reduce noise levels at the adjacent sensitive receptors to 90 dBA. All temporary barriers used shall be eight feet in height at minimum, continuous from grade to top, with no cracks or gaps, and have a minimum surface density of three pounds per square foot (e.g., one-inch thick wood fence boards).
- Utilize "quiet" air compressors and other stationary noise sources where technology exists.
- Control noise from construction workers' radios to a point where they are not audible at existing residences bordering the project site.
- The contractor shall prepare a detailed construction plana identifying the schedule for major noise-generating construction activities. The construction plan shall identify a procedure for coordination with adjacent residential land uses so that construction activities can be scheduled to minimize noise disturbance.

• Designate a "disturbance coordinator" who would be responsible for responding to any complaints about construction noise. The disturbance coordinator will determine the cause of the noise complaint (e.g., bad muffler, etc.) and will require that reasonable measures be implemented to correct the problem. Conspicuously post a telephone number for the disturbance coordinator at the construction site and include it in the notice sent to neighbors regarding the construction schedule.

Implementation of the above best management practices would reduce construction noise levels emanating from the site, limit construction hours, and minimize disruption and annoyance. With the implementation of these measures and recognizing that noise generated by construction activities would occur over a temporary period, the impact would be reduced to a less-thansignificant level.

Impact 1b: Permanent Noise Level Increase/Exceed Applicable Standards. The proposed project would not result in a substantial permanent noise level increase or exceed applicable standards at the noise-sensitive receptors in the project vicinity. **This is a less-than-significant impact.**

According to Policy N2.2 of the City's General Plan, a significant permanent noise increase would occur at existing noise-sensitive receptors if a new development results in a permanent noise increase of 3 dBA L_{dn} or greater.

Policy N2.3 limits new commercial developments from generating noise levels of 65 dBA L_{dn} or greater at the property line, excluding existing ambient noise levels. Additionally, operational noise is limited to the noise levels specified in Table 7.30.040, adjusted for ambient conditions. Maximum permissible noise levels for sources operating more than 30 minutes in a given hour for residences would be that of Zone 1: 50 dBA during nighttime hours (between 10:00 p.m. and 7:00 a.m.) and 60 dBA during daytime hours (between 7:00 a.m. and 10:00 p.m.). Maximum permissible noise levels for noise sources operating more than 30 minutes in a given hour for offices and commercial uses would be that of Zone 2: 55 dBA during nighttime hours and 60 dBA during daytime hours. For noise sources operating more than 15 minutes in a given hour, 5 dBA would be added to these thresholds. Noise sources operating more than five minutes in a given hour would have thresholds 10 dBA above these levels, and noise sources operating more than one minute in a given hour would have thresholds 15 dBA above these levels.

The Municipal Code also states that ambient noise levels would be used if existing ambient noise levels exceed the Municipal Code limits. The measured hourly average noise levels during daytime hours ranged from 62 to 76 dBA L_{eq} (average of 65 dBA L_{eq}) and from 51 to 66 dBA L_{eq} during nighttime hours (average of 59 dBA L_{eq}) along East 5th Avenue, which would represent the ambient environment at the existing residential receptors located opposite East 5th Avenue from the project site. Hourly average noise levels during daytime hours ranged from 66 to 68 dBA L_{eq} (average of 67 dBA L_{eq}) and from 53 to 67 dBA L_{eq} during nighttime hours (average of 61 dBA L_{eq}) along East 4th Avenue, which would represent ambient conditions of existing commercial receptors opposite East 4th Avenue and opposite South Ellsworth Avenue from the project site, as well as the future residential/commercial receptors opposite South B Street. Since the average hourly average noise levels measured in the project vicinity during daytime and nighttime hours exceed the Municipal Code thresholds, the measured average noise levels will be used as the baseline

threshold for activities occurring more than 30 minutes in a given hour to conservatively assess the significance of the project's operational noise. Where appropriate, the proper increase will be applied.

Project Traffic Increase

The traffic study included average daily traffic (ADT) along five roadway segments in the project site vicinity for the existing traffic volumes and project volumes. By adding the project volumes to the existing scenario, the existing plus project volumes were calculated and compared to the existing traffic volumes to estimate the project's contribution to the overall noise level increase. Along each roadway segment in the project vicinity, the overall noise level increase was determined to be 1 dBA L_{dn} along East 5th Avenue and less than 1 dBA L_{dn} along all other roadway segments. Therefore, project traffic would not result in a permanent noise increase of 3 dBA L_{dn} or more at noise-sensitive receptors in the project vicinity.

Mechanical Equipment

The site plan shows a pump room, electrical room, and a transformer room on the ground-level of the proposed building along the southwestern façade. A mechanical penthouse is shown on level five in the southwestern portion of the building. The equipment located in the mechanical yard would include variable refrigerant flow (VRF) heat pump systems, exhaust vents, and make up air units (similar to air handling or heating, ventilation, air conditioning [HVAC] units) for the office uses, commercial retail uses, and garage. Solar panels are also shown along the southeastern façade of level five. The rooftop would include residential HVAC units. For all these units, continuous 24-hour operation would represent worst-case conditions; therefore, the hourly average threshold based on average ambient noise levels would be 65 dBA during daytime hours and 59 dBA during nighttime hours for the existing residences to the southeast and would be 67 dBA during daytime hours and 61 dBA during nighttime hours for all other receptors surrounding the site.

Additionally, a generator room is shown on level B1 of the below-grade parking garage. Since the generator room would be located underground, noise levels generated by the emergency generator would be well shielded and below ambient conditions during monthly testing, which typically runs for one continuous hour. For all existing receptors, the noise level increase due to emergency generator noise would not be measurable or detectable (0 dBA L_{dn} increase).

Transformers ranging from 37.5 to 112.5 kVA are proposed at the building. For transformers up to 1,000 kVA, noise levels up to 64 dB are generated at a distance of 1 meter (3.28 feet). Assuming up to three transformers run simultaneously, the combined noise level would be 69 dBA. Under worst-case conditions, these units are assumed to run continuously during daytime and nighttime hours, generating day-night average noise level up to 75 dBA L_{dn} at a distance of 1 meter (3.28 feet). With no windows in the transformer room, which would be located along the southwestern façade, the building would provide about 20 dBA attenuation for surrounding receptors. Table 9 summarizes the noise levels generated at the property lines of the existing surrounding receptors by the ground-level transformers, assuming 20 dBA attenuation.

GIU	ind Level			
Receptor	Distance from Center of Transformer Room	Combined L _{eq} from Three Transformers	Combined L _{dn}	Noise Level Increase, L _{dn}
SE Residences	145 feet	$< 20 \text{ dBA}^{a}$	22 dBA ^a	0 dBA
SW Commercial	85 feet	21 dBA ^a	27 dBA ^a	0 dBA
NW Commercial	220 feet	$< 20 \text{ dBA}^{a}$	$< 20 \text{ dBA}^{a}$	0 dBA
Future NE Residential/ Commercial	265 feet	$< 20 \text{ dBA}^{a}$	$< 20 \text{ dBA}^{a}$	N/A ^b

 TABLE 9
 Estimated Operational Noise Levels for Transformers Located on the Ground Level

^aConservative 20 dBA noise level reduction from the mechanical screening and the elevation is assumed.

^b Future receptors would not be subject to a noise level increase since they do not currently exist.

The City's daytime and nighttime thresholds for operations occurring for more than 30 minutes in a given hour would not be exceeded by the ground-level transformers at the existing and future receptors in the immediate vicinity of the project site. All other electrical and pump rooms on the ground-level would generate noise levels lower than transformers and would also be located within rooms of the building. For all existing receptors, the noise level increase due to transformer noise would not be measurable or detectable (0 dBA L_{dn} increase).

The multi-split VRF condensing units located within the mechanical penthouse on level 5 would be for the ground-level commercial use and the office floors. While noise level information for these units were not available at the time of this study, VRF units for office buildings of this size would generate noise levels up to 66 dBA at a distance of 3 feet, while a grocery store of the size proposed by the applicant would include condensing units with noise levels of about 69 dBA at 10 feet. Exhaust fans for the ground-level commercial use are expected to produce noise levels of 55 to 65 at a distance of 3 feet. When operating at full speed, noise levels from exhaust fans from the parking garage would be up to 76 dBA at a distance of 5 feet and up to 65 dBA at 5 feet when operating at 35% speed. Typically, these types of fans would run at 20% speed, which would generate noise levels even lower; however, for purposes of studying worst-case scenario, full speed conditions are assumed.

Under worst-case conditions, up to five office condensing units, two grocery store condensing units, two commercial exhaust fans, and a garage exhaust fan would operate simultaneously for a combined noise level of 85 dBA at 3 feet. These types of units would cycle on and off continuously over a given 24-hour period, and assuming all units running continuously, the day-night average noise level under worst-case conditions would be 91 dBA L_{dn} at 3 feet.

Solar panels are also shown on the southeastern edge of the fifth level; however, this type of equipment would not generate noise levels audible at the project boundaries.

The mechanical would be surrounded by the residential units to the northeast and by a parapet wall of about the same height as the building façade around the other three sides of the penthouse. It is assumed that the mechanical screen would be solid from base to top with no cracks or gaps but would

be open on the roof. In combination with the elevation above the ground, there would be a minimum attenuation of 20 dBA for existing receptors located on the ground level or second story. A minimum attenuation of 20 dBA would also be assumed for the future residential/commercial buildings northeast of the site since the proposed residential units on level five would break the line-of-sight to the future receptors. The existing residential building to the southeast is five stories tall. The partial shielding from the building façade and the mechanical screen would provide a minimum attenuation of 10 dBA for this residential building. Table 10 summarizes the hourly average and day-night average noise levels propagated from the level 5 mechanical penthouse to the property lines of the nearest surrounding receptors with direct line-of-sight to the mechanical penthouse.

Receptor	Distance from Center of Mechanical Penthouse	Combined L _{eq} from Mechanical Penthouse	Combined Ldn	Noise Level Increase, L _{dn}
SE Residences	190 feet	39 dBA ^b	45 dBA ^b	0 dBA
SW Commercial	145 feet	31 dBA ^a	38 dBA ^a	0 dBA
NW Commercial	180 feet	29 dBA ^a	36 dBA ^a	0 dBA
Future NE Residential/ Commercial	205 feet	28 dBA ^a	35 dBA ^a	N/A ^c

TABLE 10Estimated Operational Noise Levels for Equipment Located in the Level 5
Mechanical Penthouse

^a Conservative 20 dBA noise level reduction from the mechanical screening, the elevation, and/or intervening residential units is assumed.

^bConservative 10 dBA noise level reduction from the mechanical screening and building façade is assumed.

^c Future receptors would not be subject to a noise level increase since they do not currently exist.

Assuming a minimum attenuation of 10 to 20 dBA, the equipment in the mechanical penthouse would not exceed the City's hourly average noise levels during daytime or nighttime hours at the nearest surrounding existing and future receptors or the day-night average noise level at the property line. For all existing receptors, the noise level increase due to equipment in the mechanical penthouse would not be measurable or detectable (0 dBA L_{dn} increase).

The rooftop would include HVAC for the residential units. Noise levels generated by these types of units would be up to 62 dBA at 20 feet. Assuming up to five units operating simultaneously at any given time, hourly average noise levels would be up to 69 dBA L_{eq} at a distance of 20 feet during daytime and nighttime hours. Under worst-case conditions with these units cycling on and off continuously over any given 24-hour period, the day-night average noise level under worst-case conditions would be 75 dBA L_{dn} at 20 feet.

Table 11 summarizes the noise levels at the property lines of the surrounding land uses for noise generated at the rooftop equipment. Assuming these units would be set back at least 10 feet from the edge of the rooftop above the residential units, a minimum attenuation of 20 dBA would occur at the ground-level and two-story receptors. With no screening, the existing residential building to the southeast and the future residential/commercial buildings to the northeast would potentially have

direct line-of-sight to the rooftop equipment at the project site. No attenuation is applied to these receptors.

Receptor	Distance from Center of Nearest Rooftop Equipment	Noise Levels from Rooftop Equipment	Rooftop Ldn	Noise Level Increase, Ldn
SE Residences	125 feet	53 dBA ^b	60 dBA ^b	1 dBA
SW Commercial	140 feet	32 dBA ^a	39 dBA ^a	0 dBA
NW Commercial	130 feet	33 dBA ^a	39 dBA ^a	0 dBA
Future NE Residential/ Commercial	125 feet	53 dBA ^b	60 dBA ^b	N/A ^c

 TABLE 11
 Estimated Operational Noise Levels due to Rooftop Residential Equipment

^aConservative 20 dBA noise level reduction from the mechanical screening and the elevation is assumed.

^b Conservatively, no attenuation is assumed since these residential receptors would potentially have direct line-of-sight to the rooftop equipment.

The rooftop equipment would not exceed the City's hourly average noise levels during daytime or nighttime hours at the nearest existing receptors or the day-night average noise level at the property line. For all existing commercial receptors, the noise level increase due to equipment on the rooftop would not be measurable or detectable (0 dBA L_{dn} increase), while up to a 1 dBA L_{dn} would potentially occur at the existing residential land uses to the southeast.

Truck Loading and Unloading

The site plan shows the commercial loading zone and trash pickup area attached to the groundlevel retail portion of the building, with access along South B Street. This loading area would be shielded from the existing residential building to the southeast and the commercial uses to the southwest and northwest. The future residential/commercial uses to the northeast, however, would have direct line-of-sight to the loading zone, assuming the doors are open during deliveries. Trash pickup for the office uses are shown in the southern corner, which would have direct line-of-sight to both the residential uses to the southeast and the commercial uses to the southwest.

For all loading and unloading activities at the grocery store use, truck maneuvering could take up to 15 minutes. Since the measured hourly average noise levels in the project vicinity exceeded the City's thresholds in Table 7.30.040, the noise limit for all loading/unloading activities at the grocery store occurring for up to 15 minutes in any hour would be 5 dBA added to the average ambient levels during daytime hours only, which would be 72 dBA at the future residential/commercial receptors to the northeast. Trash pickup typically takes up to five minutes in a given hour, which means 10 dB would be added to the ambient levels. The threshold for trash pickup would be 75 dBA at the existing residences to the southeast and would be 77 dBA at the existing commercial uses to the southwest.

Truck maneuvering noise would include a combination of engine, exhaust, and tire noise, as well as the intermittent sounds of back-up alarms and releases of compressed air associated with truck/trailer air brakes. Heavy trucks, such as those used at grocery stores, typically generate maximum instantaneous noise levels of 70 to 75 dBA at a distance of 50 feet. Smaller mediumsized trash trucks typically generate maximum noise levels of 60 to 65 dBA at 50 feet. The noise level of backup alarms can vary depending on the type and directivity of the sound, but maximum noise levels are typically in the range of 65 to 75 dBA at a distance of 50 feet.

Assuming three heavy truck deliveries at the grocery store and one trash pickup at the grocery store in a 24-hour period, which would represent worst-case conditions, noise levels generated at the proposed grocery store loading zone would range from 54 to 69 dBA L_{eq} , and the day-night average noise level would be 60 dBA L_{dn} at a distance of 50 feet. The future residential/commercial uses located northeast of the project site is approximately 105 feet from the center of the loading zone along South B Street. At this distance, hourly average noise levels would range from 48 to 63 dBA L_{eq} , and the day-night average noise level would be 54 dBA L_{dn} . These levels would not exceed ambient conditions or the thresholds established by the City during daytime hours.

Assuming only one trash pickup at the office trash area, the hourly average noise levels would be 54 dBA L_{eq} at 50 feet, and the day-night average noise level would be 40 dBA L_{dn} . Table 12 summarizes the noise levels due to trash pickup at the office trash area for the receptors with direct line-of-sight.

Receptor	Distance from Center of Nearest Trash Area	Hourly Average Noise Levels from Trash Pickup	Estimated L _{dn}	Noise Level Increase, L _{dn}
SE Residences	95 feet	49 dBA	35 dBA	0 dBA
SW Commercial	90 feet	49 dBA	35 dBA	0 dBA

 TABLE 12
 Estimated Operational Noise Levels due to Trash Pickups

The nearest existing receptors to the office trash pickup would not be exposed to truck maneuvering noise levels exceeding City thresholds. For all existing receptors with direct line-of-sight, the noise level increase due to trash pick noise would not be measurable or detectable (0 dBA L_{dn} increase).

Total Combined Project-Generated Noise

The operational noise levels produced by the proposed project combined (i.e., traffic, mechanical equipment, and truck loading/unloading activities) would result in up to a 2 dBA L_{dn} increase at the existing residential building along East 5th Avenue and less than 1 dBA L_{dn} at all other existing noise-sensitive receptors surrounding the project site. Therefore, the proposed project would not result in a substantial increase over ambient noise levels in the project vicinity. Further, operational noise levels would not exceed the City's thresholds at the property lines or exceed ambient levels at the surrounding existing and future land uses. This is a less-than-significant impact.

Mitigation Measure 1b: None required.

Impact 2: Exposure to Excessive Groundborne Vibration. Construction-related vibration levels would not exceed applicable vibration thresholds at nearby sensitive land uses. **This is a less-than-significant impact.**

The construction of the project may generate perceptible vibration when heavy equipment or impact tools (e.g., jackhammers, hoe rams) are used. Construction activities would include demolition, site preparation work, foundation work, and new building framing and finishing. Pile driving equipment, which can cause excessive vibration, is not expected to be required for the proposed project.

The California Department of Transportation recommends a vibration limit of 0.5 in/sec PPV for buildings structurally sound and designed to modern engineering standards, which typically consist of buildings constructed since the 1990s. Conservative vibration limits of 0.3 in/sec PPV has been used for buildings that are found to be structurally sound but where structural damage is a major concern (see Table 3 above for further explanation). For historical buildings or buildings that are documented to be structurally weakened, a cautious limit of 0.08 in/sec PPV is often used to provide the highest level of protection.

One historical building is located in the vicinity of the project site: at 505 South B Street, which is approximately 150 feet from the nearest edge of the project site. This structure would be subject to the conservative 0.08 in/sec PPV threshold. All other buildings surrounding the project site would be subject to the conservative 0.3 in/sec PPV threshold.

Table 13 presents typical vibration levels that could be expected from construction equipment at a distance of 25 feet. Project construction activities, such as drilling, the use of jackhammers, rock drills and other high-power or vibratory tools, and rolling stock equipment (tracked vehicles, compactors, etc.), may generate substantial vibration in the immediate vicinity. Jackhammers typically generate vibration levels of 0.035 in/sec PPV, and drilling typically generates vibration levels of 0.09 in/sec PPV at a distance of 25 feet.

Vibration levels would vary depending on soil conditions, construction methods, and equipment used. Table 13 also summarizes the distances to the 0.08 in/sec PPV threshold for historical buildings and to the 0.3 in/sec PPV threshold for all other buildings. Since the historical building located at 505 South B Street is 150 feet from the project's boundary, vibration levels would be at or below 0.03 in/sec PPV at this building, which would be well below the 0.08 in/sec PPV threshold. Therefore, this building would not be considered a sensitive receptor for construction vibration and will not be discussed further.

Equipment		PPV at 25 ft. (in/sec)	Minimum Distance to Meet 0.08 in/sec PPV (feet)	Minimum Distance to Meet 0.3 in/sec PPV (feet)
Clam shovel drop	Clam shovel drop		59	18
Hydromill (slurry	in soil	0.008	4	1
wall)	in rock	0.017	7	2
Vibratory Roller		0.210	61	19
Hoe Ram		0.089	28	9
Large bulldozer		0.089	28	9
Caisson drilling		0.089	28	9
Loaded trucks		0.076	24	8
Jackhammer		0.035	12	4
Small bulldozer		0.003	2	<1

 TABLE 13
 Vibration Source Levels for Construction Equipment

Source: Transit Noise and Vibration Impact Assessment Manual, Federal Transit Administration, Office of Planning and Environment, U.S. Department of Transportation, September 2018, as modified by Illingworth & Rodkin, Inc., September 2022.

Table 14 summarizes the vibration levels at each of the surrounding buildings in the project vicinity. Vibration levels are highest close to the source and then attenuate with increasing distance at the rate $\binom{D_{ref}}{D}^{1.1}$, where *D* is the distance from the source in feet and D_{ref} is the reference distance of 25 feet. While construction noise levels increase based on the cumulative equipment in use simultaneously, construction vibration levels would be dependent on the location of individual pieces of equipment. That is, equipment scattered throughout the site would not generate a collective vibration level, but a vibratory roller, for instance, operating near the project site boundary would generate the worst-case vibration levels for the receptor sharing that property line. Further, construction vibration impacts are assessed based on the potential for damage to buildings on receiving land uses, not at receptors at the nearest property lines. Therefore, the distances used to propagate construction noise levels (as shown in Table 14), which are different than the distances used to propagate construction noise levels (as shown in Table 13) was operating along the nearest boundary of the project site, which would represent the worst-case scenario.

As shown in Table 14, all non-historical buildings surrounding the project site would be more than 25 feet from the nearest boundary. Vibration levels at each of these buildings would be below 0.3 in/sec PPV.

Neither cosmetic, minor, or major damage would occur at historical or conventional buildings located 60 feet or more from the project site. At these locations, and in other surrounding areas where vibration would not be expected to cause cosmetic damage, vibration levels may still be perceptible. However, as with any type of construction, this would be anticipated and would not be considered significant, given the intermittent and short duration of the phases that have the highest potential of producing vibration (use of jackhammers and other high-power tools). By use of administrative controls, such as notifying neighbors of scheduled construction activities and scheduling construction activities with the highest potential to produce perceptible vibration during hours with the least potential to affect nearby businesses, perceptible vibration can be kept to a minimum.

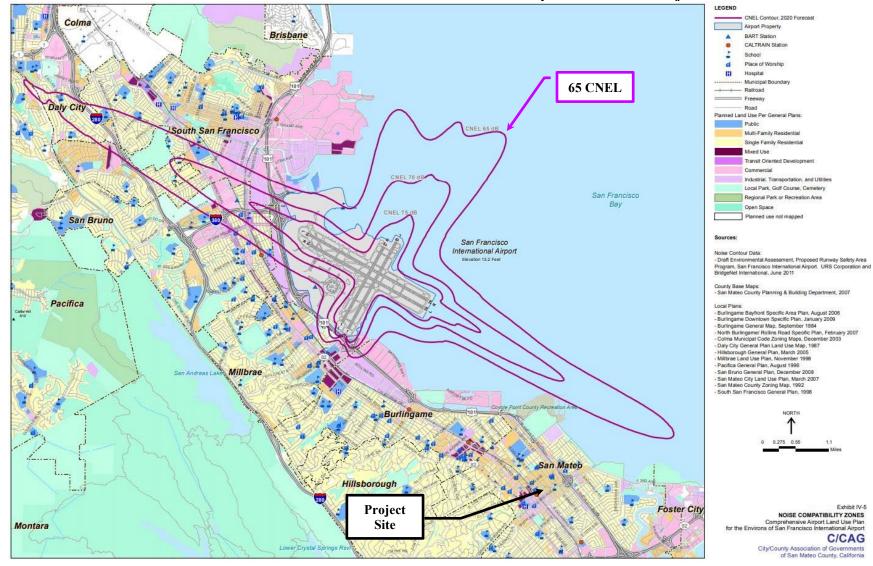
In summary, the construction of the project would not generate vibration levels exceeding 0.08 in/sec PPV at historic properties in the project vicinity and would not generate vibration levels of 0.3 in/sec PPV at the nonhistorical buildings surrounding the project site. This would be considered a less-than-significant impact.

IABLE 14 Vibration Source Levels for Construction Equipment						
		PPV (in/sec) Estimated at Nearest Building Façades Surrounding the Project Site				
Equipment		Southeast Residential Buildings (85ft)	Southwest Commercial Buildings (80ft)	Northwest Commercial Buildings (85ft)	Future Northeast Residential/ Commercial Buildings (90ft)	
Clam shovel dre	op	0.053	0.056	0.053	0.049	
Hydromill	in soil	0.002	0.002	0.002	0.002	
(slurry wall)	in rock	0.004	0.005	0.004	0.004	
Vibratory Rolle	Vibratory Roller		0.058	0.005	0.051	
Hoe Ram		0.023	0.025	0.023	0.022	
Large bulldozer		0.023	0.025	0.023	0.022	
Caisson drilling		isson drilling 0.023		0.023	0.022	
Loaded trucks		0.020	0.021	0.020	0.019	
Jackhammer		0.009	0.010	0.009	0.009	
Small bulldozer		0.001	0.001	0.001	0.001	

 TABLE 14
 Vibration Source Levels for Construction Equipment

Source: Transit Noise and Vibration Impact Assessment Manual, Federal Transit Administration, Office of Planning and Environment, U.S. Department of Transportation, September 2018, as modified by Illingworth & Rodkin, Inc., September 2022.

Mitigation Measure 2: None required.


Impact 3: Excessive Aircraft Noise. The project site is located about 3.7 miles from the San Francisco International Airport. The noise environment attributable to aircraft is considered normally acceptable. This is a less-than-significant impact.

The San Francisco International Airport is a public-use airport located approximately 3.7 miles northwest of the project site. According to the *Comprehensive Airport Land Use Compatibility Plan for the Environs of San Francisco International Airport*,¹ the project site lies well outside the 65 dBA CNEL/L_{dn} noise contour (see Figure 2), and the required safe and compatible threshold for exterior noise levels would be at or below 65 dBA CNEL/L_{dn} for aircrafts. Therefore, the proposed project would be compatible with the exterior noise standards for aircraft noise.

Assuming standard construction materials for aircraft noise below 60 dBA L_{dn} , the future interior noise levels resulting from aircraft would below 45 dBA L_{dn} . Therefore, future interior noise at the proposed building would be compatible with aircraft noise. This would be a less-than-significant impact.

Mitigation Measure 3: None required.

¹ Ricondo & Associates, Inc. with Jacobs Consultancy and Clarion Associates, *Comprehensive Airport Land Use Compatibility Plan for the Environs of San Francisco International Airport*, November 2012.

FIGURE 2 2020 CNEL Noise Contours for San Francisco International Airport Relative to Project Site

Cumulative Impacts

Cumulative noise impacts would include temporary construction noise from cumulative construction projects.

A significant cumulative traffic noise impact would occur if two criteria are met: 1) if the cumulative traffic noise level increase was 3 dBA L_{dn} or greater for future levels exceeding the normally acceptable threshold; and 2) if the project would make a "cumulatively considerable" contribution to the overall traffic noise increase. A "cumulatively considerable" contribution would be defined as an increase of 1 dBA L_{dn} or more attributable solely to the proposed project.

Cumulative and cumulative plus project ADT traffic volumes were included in the traffic study. When these volumes were compared to the existing ADT volumes, an increase of 2 dBA L_{dn} or less was calculated with and without the project, which would not be considered a "cumulatively considerable" contribution. Therefore, the project would not cause a significant cumulative noise increase at noise-sensitive uses in the project vicinity.

The City of San Mateo has provided the following list of project sites located within 500 feet of the proposed 222 East 4th Avenue project site:

- **445 South B Street** this project is located opposite South B Street from the project site and would take up the entire block. This project has not been approved. A Preliminary Planning Application has been submitted for this new mixed-use development project, but it has not yet been approved. The project proposes a seven-story 60-unit affordable housing building, a five-story office/retail building, and 128 parking spaces. Construction dates for this project have not been confirmed but due to the close proximity of the project site and the noise-sensitive receptors shared by both project sites (i.e., the existing residential receptors south of the project site and the existing commercial buildings to the north of the project site), a significant cumulative construction impact would potentially occur, exposing the nearby sensitive receptors to construction activities at both sites simultaneously or consecutively.
- **180 East 3rd Avenue** this project is located in the southern corner of the East 3rd Avenue/South Ellsworth Avenue intersection and would be approximately 260 feet from the Draegers Mixed-Use project site. The project proposes the demolition of existing buildings and the construction of a three-story mixed-use building, consisting of ground-level retail and office on the remaining floors. While this project has been approved, construction has not started. Since this project has been approved and would not share noise-sensitive receptors with direct line-of-sight to both project sites, this would not result in a cumulative construction impact.
- Kiku Crossing and 5th Avenue Garage this project is located northeast of the railroad tracks between East 4th Avenue and East 5th Avenue, approximately 400 feet from the Draegers Mixed-Use project site. This project consists of 225 affordable residential units in a seven-story building and five-level parking garage. This project is currently under

construction and will likely be completed before the Draegers project starts. This would not result in a cumulative construction impact.

The existing receptors south and north of the project site would be considered sensitive receptors during construction activities at both Draegers Mixed-Use and 445 South B Street project sites, and construction activities could occur simultaneously or consecutively. However, the noise-sensitive residential uses southeast of the project site would be more directly exposed to construction noise at the Draegers site than the 445 South B Street site. With the implementation of construction noise and vibration mitigation measures included in the individual projects, construction noise and vibration levels would be reduced as much as possible at all surrounding sensitive receptors during construction of each individual project. Therefore, the potential cumulative construction impact would be less-than-significant.

APPENDIX

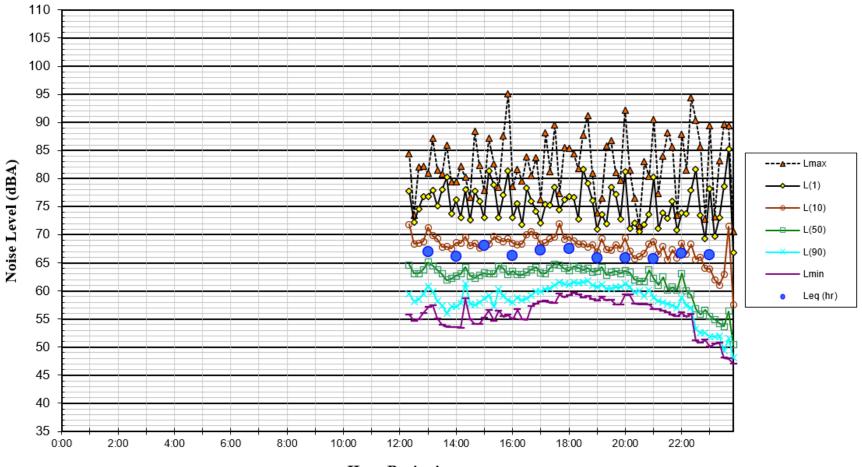


FIGURE A1 Daily Trend in Noise Levels at LT-1, Tuesday, March 22, 2022

FIGURE A2 Daily Trend in Noise Levels at LT-1, Wednesday, March 23, 2022

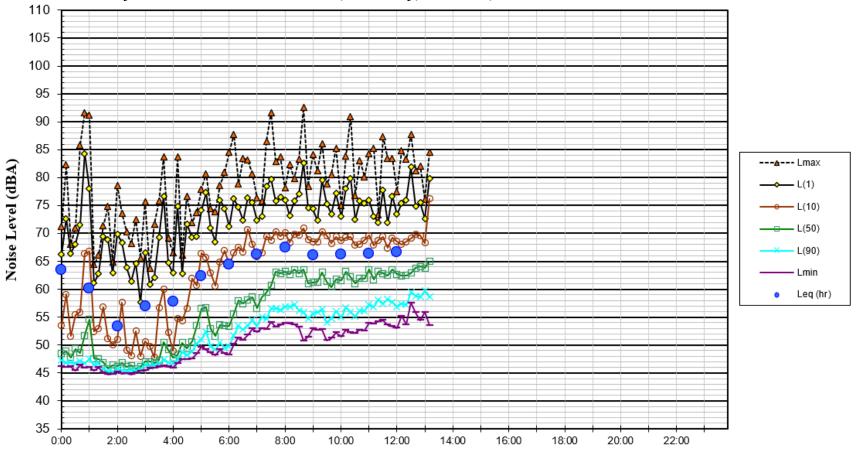


FIGURE A3 Daily Trend in Noise Levels at LT-1, Thursday, March 24, 2022

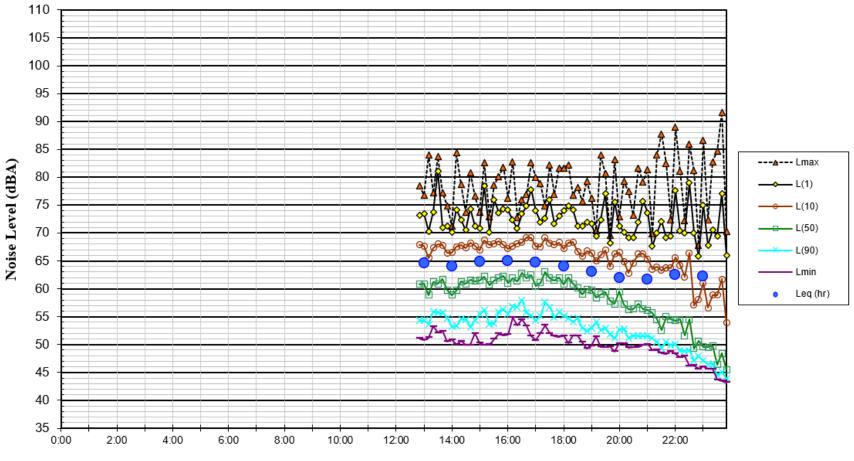


FIGURE A4 Daily Trend in Noise Levels at LT-2, Tuesday, March 22, 2022

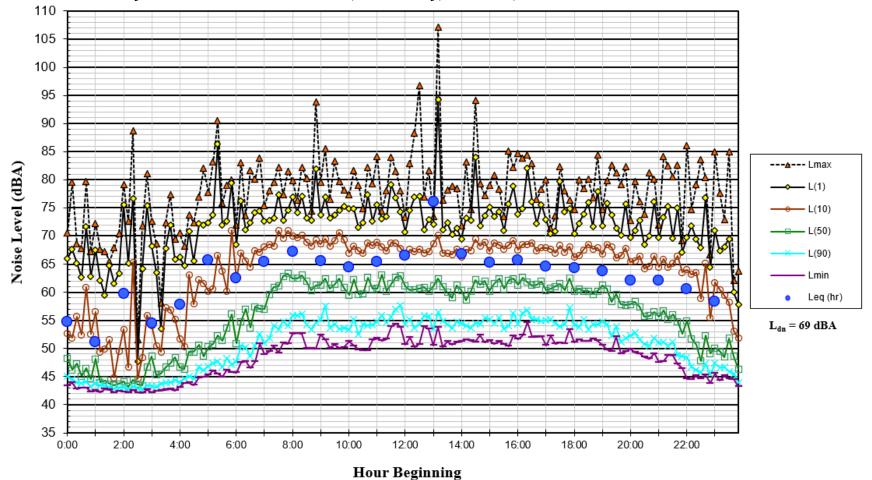


FIGURE A5 Daily Trend in Noise Levels at LT-2, Wednesday, March 23, 2022

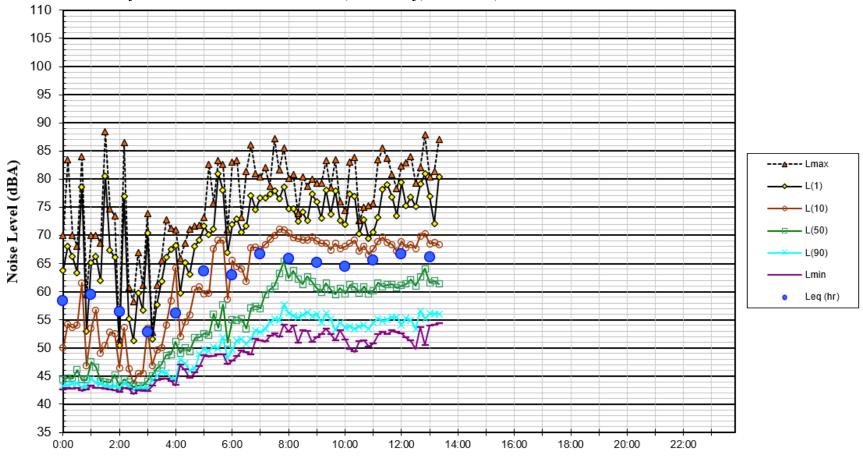


FIGURE A6 Daily Trend in Noise Levels at LT-2, Thursday, March 24, 2022